За последние десятилетия автономные космические аппараты совершили множество посадок на планеты солнечной системы и некоторые спутники. А вскоре нога... то есть посадочная опора сделанного человеком космического аппарат впервые оставит свой след на ледяной тропинке ядра кометы 67Р/Чурюмова-Герасименко.
А не было ни знаменитого «Поехали!», ни «Один маленький шаг для человека...» - на экране цифры обратного отсчета просто прошли нулевое значение, и обратный отсчет сменил знак с минуса на плюс. Никаких других видимых эффектов, но инженеры в центре управления полетом Европейского космического агентства (ESA) заметно напряглись. В этот момент начался маневр торможения космического аппарата Rosetta, находящегося более чем в 400 млн километров от нас, но, чтобы радиосигнал об этом достиг Земли, потребовалось 22 минуты. А еще через семь минут Сильван Лодью, оператор космического аппарата, глядя на дисплей с данными телеметрии, встал и торжественно произнес: «Дамы и господа, могу официально подтвердить: мы прибыли к комете!»
ОТ ДРЕВНОСТИ ДО НАШИХ ДНЕЙ
Кометы относятся к небесным объектам, которые можно увидеть невооруженным глазом, и потому они всегда вызывали особый интерес. Эти небесные тела описаны во многих исторических источниках, причем зачастую весьма красочным языком. «Она сияла дневным светом и волокла за собой хвост, похожий на жало скорпиона», - писали древние вавилоняне о комете 1140 года до нашей эры. В разные времена они считались то знамениями, то вестницами несчастий. Сейчас ученые, основываясь на накопленных за время изучения комет научных данных, считают, что кометы сыграли ключевую роль в появлении жизни на Земле, доставив на нашу планету воду и, возможно, простейшие органические молекулы.
Первые данные о составе кометного вещества были получены с помощью спектроскопических инструментов еще в XIX веке, а с началом космической эры у человечества появилась возможность непосредственно увидеть и «пощупать» (если не собственными глазами и руками, то научными приборами) хвосты комет и образцы кометного вещества. С конца 1970-х годов были запущены несколько космических аппаратов, предназначенных для исследования комет различными способами - от фотосъемки с небольших (по космическим меркам) расстояний до сбора проб и доставки на Землю образцов кометного вещества. Но в 1993 году Европейское космическое агентство решило замахнуться на гораздо более амбициозную цель - вместо того, чтобы доставлять образцы в земную лабораторию, инженеры предложили доставить лабораторию на комету. Иными словами, в рамках космической миссии Rosetta посадочный модуль Philae должен был совершить посадку на поверхность миниатюрного ледяного мира - ядра кометы.
10 ЛЕТ ПОЛЕТА
Разработка миссии длилась десять лет, и к 2003 году космический аппарат Rosetta был готов к запуску. Выведение его в космос с помощью ракеты-носителя Ariane 5 планировалось на январь 2003 года, но в декабре 2002 года такая же ракета взорвалась при запуске. Мероприятие пришлось отложить до выяснения причин неисправностей, и трехтонный космический аппарат был выведен на парковочную орбиту лишь в марте 2004 года. Отсюда он начал свое путешествие к цели - комете 67Р/Чурюмова-Герасименко, но весьма кружным путем. «Не существует достаточно мощных ракет, которые могли бы непосредственно вывести аппарат на траекторию кометы, - объясняет Андреа Аккомаццо, руководитель полета миссии Rosetta. - Поэтому аппарату пришлось совершить четыре гравитационных маневра в поле тяготения Земли (2005, 2007, 2009) и Марса (2007). Такие маневры позволяют передать часть энергии планеты космическому аппарату, разгоняя его. Дважды аппарат пересекал пояс астероидов, и чтобы эта часть полета не пропадала зря, было решено заодно исследовать некоторые объекты пояса - астероиды Лютеция и Стайне».
Rosetta стала первым космическим аппаратом, который отправился во внешнюю часть Солнечной системы, имея на борту в качестве источника энергии не радиоизотопный термоэлектрический генератор, а солнечные батареи. На расстоянии 800 млн км от Солнца (это самая дальняя точка миссии) освещенность не превышает 4% земной, поэтому батареи имеют большую площадь (64 м2). Кроме того, это не обычные батареи, а специально разработанные для работы в условиях низкой интенсивности и низких температур (Low-intensity Low Temperature Cells). Но даже несмотря на это, для экономии энергии в мае 2011 года, когда Rosetta вышла на финишную прямую к комете, аппарат был переведен в режим спячки на 957 суток: были отключены все системы, кроме системы приема команд, управляющего компьютера и системы электропитания.
Сравнение размера кометы кометы 67Р/Чурюмова-Герасименко с Лос-Анджелесом. |
ПЕРВЫЙ СПУТНИК
В январе 2014 года Rosetta была «разбужена», началась подготовка к серии маневров сближения - торможения и уравнивания скоростей, а также плановое включение научных приборов. Между тем конечная цель путешествия стала видна лишь несколько месяцев спустя: на сделанном 16 июня камерой OSIRIS снимке комета занимала всего лишь 1 пиксель. А через месяц она уже едва умещалась в 20 пикселей.
6 августа аппарат совершил маневр торможения, уравнял скорости с кометой и стал ее «почетным эскортом». «Rosetta описывает криволинейные треугольники, находясь примерно в 100 км от кометы со стороны Солнца, чтобы заснять все детали ее освещенной поверхности, - объясняет Франк Будник, специалист по полетной динамике миссии. - По каждой стороне этого треугольника аппарат дрейфует три-четыре дня, затем направление полета изменяется с помощью двигателей. Траектория немного искривляется гравитацией кометы, и благодаря этому мы можем вычислить ее массу, чтобы позднее перевести аппарат на устойчивую низкую орбиту. При этом Rosetta станет первым в истории искусственным спутником кометы».
РАЗВЕДКА С ОРБИТЫ
Но выход на орбиту кометы - лишь первая стадия, предваряющая самую главную часть миссии. Согласно плану, до ноября Rosetta будет изучать комету со своей орбиты, а также картографировать ее поверхность в рамках подготовки к посадке. «До прибытия к комете мы знали о ней довольно мало, даже ее форма - "двойная картофелина" - стала известна только при близком знакомстве, - рассказывает руководитель группы посадки аппарата Philae Стефан Уламек. - При выборе места для посадки мы руководствуемся набором требований. Во-первых, надо, чтобы поверхность в принципе была достижима с той орбиты, на которой будет находиться аппарат. Во-вторых, нужна относительно ровная площадка в радиусе нескольких сотен метров: из-за потоков в газовом облаке аппарат может снести в сторону во время довольно долгого (до нескольких часов) спуска. В-третьих, желательно, чтобы в месте посадки менялась освещенность и день сменял ночь. Это важно, потому что мы хотим изучить, как ведет себя при таком изменении поверхность кометы. Впрочем, варианты чисто "дневных" мест мы тоже рассматриваем. Нам повезло в том, что ядро кометы стабильно вращается вокруг одной оси, это значительно облегчает задачу».
ОЧЕНЬ МЯГКАЯ ПОСАДКА
После того как будет выбрано место посадки, в ноябре состоится главное событие - 100-кг модуль «Филы» (Philae) отделится от аппарата и, выпустив три опоры, совершит первую в истории посадку на ядро кометы. «Начиная этот проект, мы совершенно не представляли многих деталей процесса, - говорит Стефан Уламек. - Никто раньше не совершал посадку на комету, и мы до сих пор не знаем, какова ее поверхность: то ли она твердая, как лед, то ли рыхлая, как свежевыпавший снег, то ли что-то промежуточное. Поэтому посадочный модуль сконструирован так, чтобы закрепиться на почти любой поверхности. После отделения от аппарата Rosetta и гашения орбитальной скорости модуль Philae начнет спуск к комете под действием ее небольшой силы тяжести, после чего совершит посадку на скорости примерно 1 м/с. В этот момент очень важно предотвратить “отскок” аппарата и закрепить его на поверхности кометы, и для этого предусмотрено несколько различных систем. Толчок при касании посадочных опор будет погашен центральным электродинамическим амортизатором, в этот же момент заработает сопло на верхнем торце Philae, реактивная тяга от выброса сжатого газа прижмет аппарат к поверхности на несколько секунд, пока он будет выбрасывать два гарпуна - размером с карандаш -на тросах. Длины тросов (около 2 м) должно хватить, чтобы гарпуны надежно держали, даже если поверхность покрыта слоем рыхлого снега или пыли. На трех посадочных опорах расположены ледобуры, которые тоже будут ввинчиваться в лед при посадке. Все эти системы были опробованы на симуляторе посадки немецкого космического агентства (DLR) в Бремене - и на твердых, и на рыхлых поверхностях, и мы надеемся, что они не подведут и в реальных условиях».
Но это будет чуть позже, а пока, как говорит старший научный сотрудник Директората ESA по научным исследованиям с помощью автоматических аппаратов Марк Маккориан, «мы как дети, которые десять лет ехали в машине, а теперь наконец прибыли в научный Диснейленд, где в ноябре нас ждет самый захватывающий аттракцион».